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Quantum theory of frequency shifts of an electromagnetic wave interacting with a plasma
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In this paper we calculate the frequency shift induced on a photon by the interaction with a low density
electronic plasma. The technique is the standard perturbation theory of quantum electrodynamics, taking into
account the many body character of the plasma. The shift in the nonrelativistic approximation is shown to be
blue. Besides the quantum shift, the known classical effects and the correct temperature dependence are also
obtained. Finally the limits of the approximations used are discu$Sd®63-651X%97)07305-4

PACS numbes): 52.40.Db

[. INTRODUCTION pletely different origin. Finally in Sec. V, we discuss the
validity conditions of our approximations, in particular those

The propagation of electromagnetic waves through plasconcerning the possibility of overlooking relativistic correc-
mas has been extensively studied from a classical viewpointions. Just to fix ideas and exemplify our low density plasma,
This is usually justified in most cases by the physical condiwe refer, in various parts of the paper, to numerical values of
tions regarding the plasma temperature and density, at leafte parameters of the order of those valid for the solar co-
when the considered wavelengths are not too short. rona, i.e., a number density 10° electrons/c and a tem-

In the classical approach the plasma operates as a sort perature~ 10° K.
active filter, both absorbing and distorting electromagnetic
waves in various ways depending on the plasma parameters, II. BASIC ASSUMPTIONS AND OUTLINE
its homogeneity, the presence of an external magnetic field, OF THE METHOD
and of course the frequency of the wave. To obtain an idea of
this complicated methodology and of the kind of results one We consider a situation where an electromagnetic wave,
obtains it is useful to have a look at REf]. It is remarkable plane and monochromatic, coexists with a plasma of elec-
that, according to the different conditions, various frequencytrons with a numerical density distributior(x). The propa-
shifts arise. gation is along the axis.

Another classical approach, particularly fit for optical, or  The “unperturbed” state is obtained when the coupling
shorter, wavelengths, is that which considers the interactiohetween the wave and the plasma is set to zero; conse-
of the electromagnetic wave with a fluctuating medium as ajuently, the energy distribution of the electrons is that of a
scattering by inhomogeneities inside it. This analysis hagermionic plasma of temperatuie and densityn restrained
been made in Ref$2—4] and leads again to frequency shifts into a potential well, and the wave has a frequency
of the incoming radiation depending now also on the scatter- Let us now switch on the coupling and, assuming the
ing angle. In particular, a blueshift is found for forward scat-interaction energy to be small, determine the shift in the
tering, as a manifestation of the Rayleigh scattering. energies as a perturbation of the “initiaki.e., uncouplegl

In principle, however, the quantum aspects of the interacsituation. Supposing that the interaction is set up in a finite
tion of the wave with the plasma should not be overlookedtime lapse and comparing the situations-at in time with
This is likely to be especially true in some situations of as-that at +o, we mimic the actual process of an incoming
trophysical or even cosmological interest, where the densitplane wave of frequency and an outgoing one of frequency
of the plasma is rather low, and the distances are so high as+ dw.
to allow small effects to pile up. The technique actually used to compute the shift in the

In this paper we shall precisely investigate the quantunfrequency of the wave is that of the time independent pertur-
effects using standard quantum electrodynamics and a pepations. The interaction Hamiltonian is
turbative treatment, as outlined in Sec. Il. The method will
also produce the known classical features of the propagation e
of electromagnetic waves through a plasma, as we show in H=- Ef j-Adr, (1)
Sec. IV. On the quantum side, in Sec. Ill we take into ac-

count the many body nature of a plasma that entrains theh Ais th ial f th i
appropriate fermionic statistic. In the nonrelativistic limit we WNEreA Is the vector potential operator of the wave an

find, for a low density locally homogeneouise., homoge- the current dens[ty operator approprigte for this prloblem; the
neous on the scale of a few wavelengthsma, a blueshift volume integral is limited to the confinement region of the
of the photon frequencithis has the same sign as that of the Plasma. The complete nonrelativistic expressionjferhen
classical results if2—4], though now the effect has a com- an electromagnetic interaction is presenfs$

if e
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Cast in the second quantization formalism, the interaction The only nonvanishing contributions are those with re-

Hamiltonian is[6] spect toj states of the form,:=®@ V¥,
H=H/+H], ) ( 1
jo:=| =D |V,
, . J2 \/E k k q
H/:= E bk®2 9q.q'8@q T H.c.|, (4)
K a.a’ or
62 ﬁ 5k Kk’ ! 1
H” = _ S t 5 .
| ng Vk,k’,q,q’ W k I((8aq aq’ ( ) J3:= Eq)k/@q)k ®\Ifqr
where we defined (d is the electromagnetic vacuunit is easy to show that
‘ e ﬁ3 1/2 ) "
Yq,0'~ E(m) 9" UkSkqr—q- ®) (HD)i=9q,q
Theb™s and theb’s are the bosonic creation and annihi- , ) 1
lation operators associated with the photons;ateeare fer- (HD)j,i=(H)j, :qu’,q'

mionic (electroni¢ operators. The energy of the photon is
fhw, its momentum igik, and of coursew=ck; the polar-
ization of the photon is expressed by the unitary vecigr
k’s and g's, respectively, are photonic and electronic wave
vectors; primes denote intermediate state variables; finally,
the unessential spin and polarization indices have been
dropped, though an average over them in the final formula¥’
is performed. K K
The last term in Eq(2) is usually omitted under the ex- (1) . _ 9a.q' 944
.. . . .. . . . .= (1_1/ /) -
plicit, and sometimes implicit, assumption it makes contribu- ®.9 oy Vhote—ey hotey—é€g
tions small with respect to those coming from the first. The 9
frequency shift of the external photon can be written in the
form

So the energy shift induced By, on ®, @V is [7]

r o Ap® ()
AE,, ,=AE, 4t AE,,, (8)
here

? ?

2) . _ .
Sw=0dw' + Sw", AE, g E E (1-vq) (10

wheredw’ and dw”, respectively, are the contributions due \ynere. for a Fermi gas, in the low density approximation
to H/ and H{ . In this paper we calculatdw for a low

density plasma, with a perturbative treatment up to order 1
a=e?/hc (this is equivalent to keep the first order term in vq=1—:Z€7ﬁEq- (13)
H| and the second ifl|). ZeBeat1

z

lll. QUANTUM FREQUENCY SHIFT In order to obtain the energy shift, we have to take the mean

We first consider the contributions to the shift due tovalue ofAEL’l,,q with respect to the possible states of the
H/ . Let Hey and Hp be the electromagnetic field and the electrons¥ . We have
plasma free Hamiltonian${,, and7p, are the bosonic Fock
space associated with the photons and the fermionic Fock AE,=AEY+AE?,
space associated to the electrons, respectivlly: Hen,
and ¥, e Hp are the one particle electronic and photonic
wave fqunctiopns. P P AED =2 quEEj’g,
We calculate the shiAE,, , of the value of the energy of a
the state®, @V of Hen®Hp. Sinced, @V is an eigen-
vector of H,,t Hp, we can use the second order perturba- AE®: => VqAEf)q- 13
tion theory (the first order energy shift is zeroThe energy q ’
shift of the staté is

(12

We shall consider the contribution to the shifEEul) in Sec.
(Hij(H;ji IV.

AE= lzl Ei—E; (=), ™ The termAE!? makes a divergent contributidi]. In the
following we shall show that, if we subtract the second order
where | labels any(normalized eigenvector ofH.,+Hp, self-energy of the electronSE®, the contribution to the re-
and v; is the probability that the statgis occupied by an sulting term is finite and independent from the normalization

electron. volume. This self-energy is
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with respect to somek;’s. Then, if the plasma temper-

AEO=D yqz L'/ (14)  ature is not higher than~10° K , we can neglect
a gk €q— €q —hck (RImo)[(k/2)—qu] in the denominator of Eq(17) with
o " respect to 1(in fact, (A/mc)[(k/2)—qu]=O[(A/mc)k+]
Thus theobservablecontribution to the shift is =0(JkgT/m), and, ifT~10° K, kg T/m&E~10"2)

Now the integrals are Gaussian, and they can be easily
evaluated . This gives
Using Eqs.(10) and (14), 22 e 72
A E?= kS
29 30T

AE@=AE? - AEC.

k" 12
9q7 4

T2 _ _ [t s S
AE E Z R ey o (15)

Finally in the low density assumptiorz€1), the densityn
of the plasma is

We now show that l/AEEf) has a finite value, indepen-

o . . . 1
dent _f_rom the normalization volume. Since in low density n=zk$23—3,§. (18)
conditions vqvy =z 2ex — ﬁ(eq,+eq)] we have, using the ™
explicit expression(1) for gGI q As a consequence, we have
1 ~ e’ #% 1 1 n%e? #2 n? #s
TAE@ =52~ ZAE@ =
VAE‘” “ e 2 V2 VAEm “m2c2 23 m2c B (19
% E (9’ u)? exp(— Bleg + &) , If the plasma is not homogenous, this energy shift depends
ko k fick+eq — €4 kta'a- on the position via the electronic plasma thermodynamic pa-

rameters. As we noted in Sec. |, the dependence on the po-
Summing over ' and using (NZ)Eqk—>[1/ sition is negligible over distances of the order of the wave-

(27)®] fdkSdq, we obtain length. Thus, the observed energy shift is simply the volume
1 > 43 average(see Sec. V beloyof AE(?):
TAE@=2 % M .
Vo m°c 2(27)°®

1 - %
2)._ = (2)(yy— 2
fow?): VdeAEw (X) ngzcafvdxn(x).

xf dQJ olk(q'uk exrl— Aleg-i* €l (20

Ack+ €lg—k|~ €q
(16 IV. CLASSICAL CONTRIBUTIONS TO THE SHIFT

The integral ovek can be computed in spherical coordi- We now consider the contribution to the shift due to
nates ¢, 6,¢) choosingq as polar axis; the polarization vec- AE(wl). In low density conditions we have, after summing
tor (normal to the polar axjsis defined byp=0. We have with respect tag’ and taking the continuous limit,

(n=co9) )
w_& A’ ~Be 2
(9-u)?=g%coSe sirt8=q%coSe(1— u?), AE, =12 5,7 (277)3f dge "(q-uy)

h? 2412 2 1
e|q,k|teq=%(q +k“—2gkux=q°). -

ho+ €47 €|q+K|

fiw+ € gk — €q

Calculating integra(16) over ¢, then integrating over all the The integral can be calculated in the same approximation

possible directions of that leads to Eq(19). We obtain

1~ %2 h% [+= [+= 1 e’ h kgT

_ (0 P H_- -~ B
VT e mic? 25774f dk 0 dadf _1d'“ AR = ek ma™ (21)

exq (29°+k?— 2qk,u)/k ] Once again, if the plasma is hot homogeneous,
X(1—u?) ,

1+i<5_q“) fi bV = fd AED (=S kTN
mc! 2 @ X 0= 2ckmev: @2

ol whereN is the total number of electrons W
with ky:=2mkgT/A2. Let us now determine the contribution coming fratfi of
In order to calculate the integrals ovgrandk, we notice  Eg. (3). Using again a perturbative treatment we see that the
that the integrand is not exponentially zero only when thefirst order term is no longer zero and its magnitude in terms
positive definite quantity >+ k?—2qku is smaller than a  of powers of the coupling parameteris the same as that of
few k%’s. This condition is satisfied only K andq are small  (20), it cannot then be priori overlooked.
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The correction we are now studying is It should be less than the wavelength of plasmons, the Debye
length, and the screening length of the plasma. On the other
hand, its square should of course be much greater than the
Compton scattering cross section: our approach indeed has
nothing to do with individual scattering phenomena.
Assuming for simplicity a Gaussian distribution along the

line of sight, such as

f60"=2, vg(®,0V|A]|®,0W,), (23)
q

whereH! is given by Eq.(5). Thus

2
e h 6 —qa’ k—=k' _ 2 2
fdw" = > g DV, > S n(x)=nge ¥,
2me* v < Yk VKK
Eq. (20) gives
xb! b,@al,al®,oW 72
q’'~q k' <k q> 5w(2):23m2C a’ng’7T3/2RL2. (27)

e 4 e?

= _EZ V)= — L is the transverse ‘“coherence length:” it may in fact be
2mc* V o e | 2mc used as a phenomenological parameter.
) o In our model relaxation phenomena in the plasma play no
In fact Zq/vq is, by definition, the total numbeN of (e This is because we consider a steady state situation and,
particles; consequently/V is nothing else than the average fyrthermore, our plasma is modeled as a reservoir, that can
density(n) of the plasma in the given volume. This gives exchange with the photon any amount of energy without
dw"=e*(n)/(2mcK), which is precisely the classical correc- changing its thermodynamic state. Thus any dynamic pro-
tion to the dispersion relation due to the presence of a lowess due to the transit of the photon is neglected. Of course,
density homogeneous electron plasndiose constant den-  this approximation is good only if the plasma is very ex-
sity is (n)), when the temperature is zero. In fact, when it istended, its density is very low, and the electromagnetic field

w?/c?k?>kgT/mc?, we have(see[8]) is not too strong; all of these conditions are indeed satisfied

(24)

|
<|zZ

2Kk2 (25)

T o2 in our case.
w

2. 2 B P

W =wp+C 2),

1+ — —
mcé o

where w,= J(n€?/m) is the plasma frequency. Far,<kc
andkgT/mc<1 (nonrelativistic approximatiorthis gives

L keT
mcé

w=kc+ =

kgT\| €°n
2

mc/ 2mck’
(26)

I P
R— Cc

This is of course true whe@M~1C® K, which implies
kgT/mc2~10"4.
The last term in Eq(26) coincides with do" + dw™),

where o™ gives the first order temperature correction.

Like all the classical terms, it depends &V (V is the
normalization volume of the electromagnetic fieltience,

The result we found has been obtained under some as-
sumptions that need a careful consideration. First of all, the
calculation is based on the perturbation theory. Usually this
theory treats single electrons interacting with an external
field or with a bath of photons. Here we are dealing with one
photon interacting with a gas of electrons. The fermionic
nature of electrons comes into play through the factor
vevg in Eq. (15), or, simply, when the approximation is
appropriate, through the fugacigyof the plasma. When the
fugacity is small enough, it is easy to see that the relevant
terms of the perturbative series are weighed not onlywby
and its powers, but rather by products of powersaofnd
powers ofz: this fact may change the relative importance of
the different contributions.

Actually Eq.(20) is of the orderaz?. If relativistic effects
had been taken into account, a second-order contribution

whenV— o, such a term makes a vanishing contribution towould also have come from processes such as virtual pair

the frequency shift.

V. DISCUSSION

creation. Such a contribution is proportional to
az(ho/mc®)?, and can be overlooked when

ho\?

The dependency of the classical termsNiV rules them (W) <z
out when the measuring apparatus is outside of the plasma
and the normalization volume for the electromagnetic wave To sum up we conclude that the blueshift found in this
is infinite. This is not the case for the quantum contribution paper applies to waves whose frequency satisfies to the con-
(20), which is always different from zero: it will be the only dition
contribution to the frequency shift observable in astrophysi-
cal or even cosmological conditions. An important remark on z
Eq. (20) is that the volume over which one integrates cannot f Z.
be the volume of the whole universe; in fact it extends from
the source to the receiver-( from —o to +) along the For higher frequencies relativistic contributions must be in-
line of sight, but transversely it should not be more than thecluded. To get an idea of the numbers, consider that in the
distance over which the plasma may practically be thought ophysical conditions of vast portions of the solar corarzan
as infinite for quantum mechanical calculations. This transbe as low as 10'; consequently, the upper frequency is
versal extension is a sort of coherence length for the plasma- 10! Hz.

mc?

wp< <
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