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Quantum theory of frequency shifts of an electromagnetic wave interacting with a plasma

A. Laio, G. Rizzi, and A. Tartaglia*

Dipartimento di Fisica, Politecnico, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
~Received 11 July 1996!

In this paper we calculate the frequency shift induced on a photon by the interaction with a low density
electronic plasma. The technique is the standard perturbation theory of quantum electrodynamics, taking into
account the many body character of the plasma. The shift in the nonrelativistic approximation is shown to be
blue. Besides the quantum shift, the known classical effects and the correct temperature dependence are also
obtained. Finally the limits of the approximations used are discussed.@S1063-651X~97!07305-4#

PACS number~s!: 52.40.Db
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I. INTRODUCTION

The propagation of electromagnetic waves through p
mas has been extensively studied from a classical viewpo
This is usually justified in most cases by the physical con
tions regarding the plasma temperature and density, at
when the considered wavelengths are not too short.

In the classical approach the plasma operates as a so
active filter, both absorbing and distorting electromagne
waves in various ways depending on the plasma parame
its homogeneity, the presence of an external magnetic fi
and of course the frequency of the wave. To obtain an ide
this complicated methodology and of the kind of results o
obtains it is useful to have a look at Ref.@1#. It is remarkable
that, according to the different conditions, various frequen
shifts arise.

Another classical approach, particularly fit for optical,
shorter, wavelengths, is that which considers the interac
of the electromagnetic wave with a fluctuating medium a
scattering by inhomogeneities inside it. This analysis
been made in Refs.@2–4# and leads again to frequency shif
of the incoming radiation depending now also on the scat
ing angle. In particular, a blueshift is found for forward sc
tering, as a manifestation of the Rayleigh scattering.

In principle, however, the quantum aspects of the inter
tion of the wave with the plasma should not be overlook
This is likely to be especially true in some situations of a
trophysical or even cosmological interest, where the den
of the plasma is rather low, and the distances are so hig
to allow small effects to pile up.

In this paper we shall precisely investigate the quant
effects using standard quantum electrodynamics and a
turbative treatment, as outlined in Sec. II. The method w
also produce the known classical features of the propaga
of electromagnetic waves through a plasma, as we sho
Sec. IV. On the quantum side, in Sec. III we take into a
count the many body nature of a plasma that entrains
appropriate fermionic statistic. In the nonrelativistic limit w
find, for a low density locally homogeneous~i.e., homoge-
neous on the scale of a few wavelengths! plasma, a blueshift
of the photon frequency~this has the same sign as that of t
classical results in@2–4#, though now the effect has a com
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pletely different origin!. Finally in Sec. V, we discuss the
validity conditions of our approximations, in particular tho
concerning the possibility of overlooking relativistic corre
tions. Just to fix ideas and exemplify our low density plasm
we refer, in various parts of the paper, to numerical values
the parameters of the order of those valid for the solar
rona, i.e., a number density;106 electrons/cm3 and a tem-
perature;106 K.

II. BASIC ASSUMPTIONS AND OUTLINE
OF THE METHOD

We consider a situation where an electromagnetic wa
plane and monochromatic, coexists with a plasma of e
trons with a numerical density distributionn(x). The propa-
gation is along thex axis.

The ‘‘unperturbed’’ state is obtained when the coupli
between the wave and the plasma is set to zero; co
quently, the energy distribution of the electrons is that o
fermionic plasma of temperatureT and densityn restrained
into a potential well, and the wave has a frequencyv.

Let us now switch on the coupling and, assuming t
interaction energy to be small, determine the shift in t
energies as a perturbation of the ‘‘initial’’~i.e., uncoupled!
situation. Supposing that the interaction is set up in a fin
time lapse and comparing the situations at2` in time with
that at1`, we mimic the actual process of an incomin
plane wave of frequencyv and an outgoing one of frequenc
v1dv.

The technique actually used to compute the shift in
frequency of the wave is that of the time independent per
bations. The interaction Hamiltonian is

HI52
e

cE j•A dr , ~1!

whereA is the vector potential operator of the wave andj is
the current density operator appropriate for this problem;
volume integral is limited to the confinement region of t
plasma. The complete nonrelativistic expression forj when
an electromagnetic interaction is present is@5#

j52
i\

2m
~F†

“F2F“F†!2
e

mc
F†FA. ~2!
7457 © 1997 The American Physical Society
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Cast in the second quantization formalism, the interact
Hamiltonian is@6#

HI5HI81HI9 , ~3!

HI8 :5S (k bk^ (
q,q8

gq,q8
k aq

†aq81H.c.D , ~4!

HI9 :5
e2

2mc2
\

V (
k,k8,q,q8

dk2k8,q2q8

Avv8
bk8
† bk^aq8

† aq , ~5!

where we defined

gq,q8
k

5
e

m S \3

2Vv D 1/2q8•ukdk,q82q . ~6!

Theb†’s and theb’s are the bosonic creation and annih
lation operators associated with the photons; thea’s are fer-
mionic ~electronic! operators. The energy of the photon
\v, its momentum is\k, and of coursev5ck; the polar-
ization of the photon is expressed by the unitary vectoruk ;
k’s andq’s, respectively, are photonic and electronic wa
vectors; primes denote intermediate state variables; fina
the unessential spin and polarization indices have b
dropped, though an average over them in the final formu
is performed.

The last term in Eq.~2! is usually omitted under the ex
plicit, and sometimes implicit, assumption it makes contrib
tions small with respect to those coming from the first. T
frequency shift of the external photon can be written in
form

dv5dv81dv9,

wheredv8 anddv9, respectively, are the contributions du
to HI8 and HI9 . In this paper we calculatedv for a low
density plasma, with a perturbative treatment up to or
a5e2/\c ~this is equivalent to keep the first order term
HI9 and the second inHI8).

III. QUANTUM FREQUENCY SHIFT

We first consider the contributions to the shift due
HI8 . Let Hem andHP be the electromagnetic field and th
plasma free Hamiltonians;HemandHP, are the bosonic Fock
space associated with the photons and the fermionic F
space associated to the electrons, respectively;FkP Hem
andCqP HP are the one particle electronic and photon
wave functions.

We calculate the shiftDEv,q of the value of the energy o
the stateFk^ Cq of Hem^HP . SinceFk^ Cq is an eigen-
vector ofHem1HP , we can use the second order perturb
tion theory~the first order energy shift is zero!. The energy
shift of the statei is

DEi5(
jÞ i

~HI ! i j ~HI ! j i
Ei2Ej

~12n j !, ~7!

where j labels any~normalized! eigenvector ofHem1HP ,
and n j is the probability that the statej is occupied by an
electron.
n

y,
n
s

-
e
e

r

ck

-

The only nonvanishing contributions are those with
spect toj states of the formj 1 :5F0^ Cq8 ,

j 2 :5S 1

A2
Fk^ Fk8D ^ Cq8 ,

or

j 3 :5S 1

A2
Fk8^ FkD ^ Cq8

(F0 is the electromagnetic vacuum!. It is easy to show that

~HI8! j 1i5gq,q8
k ,

~HI8! j 2i5~HI8! j 3i5
1

A2
gq8,q
k8 .

So the energy shift induced byHI8 on Fk^ Cq is @7#

DEv,q8 5DEv,q
~1! 1DEv,q

~2! , ~8!

where

DEv,q
~1! :5(

q8
~12nq8!F ugq,q8

k u2

\v1eq2eq8
2

ugq8,q
k u2

\v1eq82eq
G ,

~9!

DEv,q
~2! :5(

k8
(
q8

~12nq8!
ugq8,q

k8 u2

eq2eq82\v8
, ~10!

where, for a Fermi gas, in the low density approximation

nq5
1

1

z
ebeq11

.ze2beq. ~11!

In order to obtain the energy shift, we have to take the m
value of DEv,q8 with respect to the possible states of t
electronsCq . We have

DEv8 5DEv
~1!1DEv

~2! ,
~12!

DEv
~1! :5(

q
nqDEv,q

~1! ,

DEv
~2! :5(

q
nqDEv,q

~2! . ~13!

We shall consider the contribution to the shiftDEv
(1) in Sec.

IV.
The termDEv

(2) makes a divergent contribution@7#. In the
following we shall show that, if we subtract the second ord
self-energy of the electronsDE0, the contribution to the re-
sulting term is finite and independent from the normalizat
volume. This self-energy is
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DE05(
q

nq(
q8k8

ugq8,q
k8 u2

eq2eq82\ck8
. ~14!

Thus theobservablecontribution to the shift is

DẼv
~2!5DEv

~2!2DE0.

Using Eqs.~10! and ~14!,

DẼv
~2!52(

k8
(
qq8

nqnq8
ugq8,q

k8 u2

eq2eq82\ck8
. ~15!

We now show that 1/VDẼv
(2) has a finite value, indepen

dent from the normalization volume. Since in low dens
conditionsnqnq8>z2exp@2b(eq81eq)#, we have, using the

explicit expression~1! for gq8,q
k8 ,

1

V
DẼv

~2!5z2
e2

m2c

\3

2

1

V2

3 (
kqq8

~q8•uk!
2

k

exp~2b~eq81eq!!

\ck1eq82eq
dk1q8,q .

Summing over q8 and using (1/V2)(qk→@1/
(2p)6]*dk*dq, we obtain

1

V
DẼv

~2!5z2
e2

m2c

\3

2~2p!6

3E dqE dk
~q•uk!

2

k

exp@2b~e uq2ku1eq!#

\ck1e uq2ku2eq
.

~16!

The integral overk can be computed in spherical coord
nates (r ,u,w) choosingq as polar axis; the polarization vec
tor ~normal to the polar axis! is defined byw50. We have
(m5cosu)

~q•uk!
25q2cos2w sin2u5q2cos2w~12m2!,

e uq2ku6eq5
\2

2m
~q21k222qkm6q2!.

Calculating integral~16! overw, then integrating over all the
possible directions ofq

1

V
DẼv

~2!5
z2e2

m2c2
\2

25p4E
0

1`

dkE
0

1`

dqq4E
21

1

dm

3~12m2!
exp@2~2q21k222qkm!/kT

2#

11
\

mcS k22qm D ,

~17!

with kT :5A2mkBT/\
2.

In order to calculate the integrals overq andk, we notice
that the integrand is not exponentially zero only when
positive definite quantity 2q21k222qkm is smaller than a
few kT

2’s. This condition is satisfied only ifk andq are small
e

with respect to somekT’s. Then, if the plasma temper
ature is not higher than;106 K , we can neglect
(\/mc)@(k/2)2qm# in the denominator of Eq.~17! with
respect to 1„in fact, (\/mc)@(k/2)2qm#5O@(\/mc)kT#
5O(AkBT/mc2), and, ifT;106 K, AkBT/mc2;1022

….
Now the integrals are Gaussian, and they can be ea

evaluated . This gives

1

V
DẼv

~2!5
z2e2

m2c2
\2

29p3 kT
6 .

Finally in the low density assumption (z!1), the densityn
of the plasma is

n5zkT
3 1

23p3/2. ~18!

As a consequence, we have

1

V
DẼv

~2!5
n2e2

m2c2
\2

23
5

n2

m2c

\3

23
a. ~19!

If the plasma is not homogenous, this energy shift depe
on the position via the electronic plasma thermodynamic
rameters. As we noted in Sec. I, the dependence on the
sition is negligible over distances of the order of the wav
length. Thus, the observed energy shift is simply the volu
average~see Sec. V below! of DẼv

(2) :

\dv~2!:5
1

VEVdxDẼv
~2!~x!5

\3

23m2c
aE
V
dxn2~x!.

~20!

IV. CLASSICAL CONTRIBUTIONS TO THE SHIFT

We now consider the contribution to the shift due
DEv

(1). In low density conditions we have, after summin
with respect toq8 and taking the continuous limit,

DEv
~1!5

e2

m2

\3

2v
z

1

~2p!3
E dqe2beq~q•uk!

2F 1

\v1eq2e uq1ku

2
1

\v1e uq2ku2eq
G .

The integral can be calculated in the same approxima
that leads to Eq.~19!. We obtain

DEv
~1!5

e2

m

\

2ck

kBT

mc2
n. ~21!

Once again, if the plasma is not homogeneous,

\dv~1!:5
1

VEVdxDEv
~1!~x!5

e2

m

\

2ck

kBT

mc2
N

V
, ~22!

whereN is the total number of electrons inV.
Let us now determine the contribution coming fromHI9 of

Eq. ~3!. Using again a perturbative treatment we see that
first order term is no longer zero and its magnitude in ter
of powers of the coupling parametera is the same as that o
~20!, it cannot then bea priori overlooked.
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The correction we are now studying is

\dv95(
q

nq^Fv ^ CquĤI9uFv ^ Cq&, ~23!

whereĤI9 is given by Eq.~5!. Thus

\dv95
e2

2mc2
\

V(
q8

nq8K Fv ^ CqU (
q,q8,k,k8

dq2q8,k2k8

Akk8

3bq8
† bq^ak8

† akUFv ^ CqL
5

e2

2mc2
\

V

1

v(
q8

nq85
e2

2mc

\

k

N

V
. ~24!

In fact (q8nq8 is, by definition, the total numberN of
particles; consequentlyN/V is nothing else than the averag
density ^n& of the plasma in the given volume. This give
dv95e2^n&/(2mck), which is precisely the classical corre
tion to the dispersion relation due to the presence of a
density homogeneous electron plasma~whose constant den
sity is ^n&), when the temperature is zero. In fact, when it
v2/c2k2@kBT/mc2, we have~see@8#!

v25vP
21c2k2S 11

kBT

mc2
vP
2

v2 D , ~25!

wherevp5A(ne2/m) is the plasma frequency. Forvp!kc
andkBT/mc2!1 ~nonrelativistic approximation! this gives

v5kc1
1

2 S 11
kBT

mc2D vp
2

kc
5kc1S 11

kBT

mc2D e2n

2mck
.

~26!

This is of course true whenT;106 K, which implies
kBT/mc2;1024.

The last term in Eq.~26! coincides withdv91dv (1),
where dv (1) gives the first order temperature correctio
Like all the classical terms, it depends onN/V (V is the
normalization volume of the electromagnetic field!. Hence,
whenV→`, such a term makes a vanishing contribution
the frequency shift.

V. DISCUSSION

The dependency of the classical terms onN/V rules them
out when the measuring apparatus is outside of the pla
and the normalization volume for the electromagnetic wa
is infinite. This is not the case for the quantum contributi
~20!, which is always different from zero: it will be the onl
contribution to the frequency shift observable in astrophy
cal or even cosmological conditions. An important remark
Eq. ~20! is that the volume over which one integrates can
be the volume of the whole universe; in fact it extends fro
the source to the receiver (; from 2` to 1`) along the
line of sight, but transversely it should not be more than
distance over which the plasma may practically be though
as infinite for quantum mechanical calculations. This tra
versal extension is a sort of coherence length for the plas
w

.

a
e

i-
n
t

e
of
-
a.

It should be less than the wavelength of plasmons, the De
length, and the screening length of the plasma. On the o
hand, its square should of course be much greater than
Compton scattering cross section: our approach indeed
nothing to do with individual scattering phenomena.

Assuming for simplicity a Gaussian distribution along t
line of sight, such as

n~x!5n0e
2x2/2R2,

Eq. ~20! gives

dv~2!5
\2

23m2c
an0

2p3/2RL2. ~27!

L is the transverse ‘‘coherence length:’’ it may in fact b
used as a phenomenological parameter.

In our model relaxation phenomena in the plasma play
role. This is because we consider a steady state situation
furthermore, our plasma is modeled as a reservoir, that
exchange with the photon any amount of energy with
changing its thermodynamic state. Thus any dynamic p
cess due to the transit of the photon is neglected. Of cou
this approximation is good only if the plasma is very e
tended, its density is very low, and the electromagnetic fi
is not too strong; all of these conditions are indeed satis
in our case.

The result we found has been obtained under some
sumptions that need a careful consideration. First of all,
calculation is based on the perturbation theory. Usually t
theory treats single electrons interacting with an exter
field or with a bath of photons. Here we are dealing with o
photon interacting with a gas of electrons. The fermion
nature of electrons comes into play through the fac
nqnq8 in Eq. ~15!, or, simply, when the approximation i
appropriate, through the fugacityz of the plasma. When the
fugacity is small enough, it is easy to see that the relev
terms of the perturbative series are weighed not only bya
and its powers, but rather by products of powers ofa and
powers ofz: this fact may change the relative importance
the different contributions.

Actually Eq.~20! is of the orderaz2. If relativistic effects
had been taken into account, a second-order contribu
would also have come from processes such as virtual
creation. Such a contribution is proportional
az(\v/mc2)2, and can be overlooked when

S \v

mc2D
2

!z.

To sum up we conclude that the blueshift found in th
paper applies to waves whose frequency satisfies to the
dition

vp,v!
mc2

\
Az.

For higher frequencies relativistic contributions must be
cluded. To get an idea of the numbers, consider that in
physical conditions of vast portions of the solar coronaz can
be as low as 10217; consequently, the upper frequency
;1011 Hz.
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